Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1525991

ABSTRACT

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Subject(s)
Acetates/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cyclopropanes/pharmacology , Quinolines/pharmacology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Sulfides/pharmacology , A549 Cells , Acetates/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclopropanes/chemistry , Drug Repositioning , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutralization Tests , Protein Conformation , Quinolines/chemistry , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Sulfides/chemistry , Vero Cells , Virus Internalization/drug effects
3.
Comb Chem High Throughput Screen ; 24(5): 716-728, 2021.
Article in English | MEDLINE | ID: covidwho-721423

ABSTRACT

AIMS: To predict potential drugs for COVID-19 by using molecular docking for virtual screening of drugs approved for other clinical applications. BACKGROUND: SARS-CoV-2 is the betacoronavirus responsible for the COVID-19 pandemic. It was listed as a potential global health threat by the WHO due to high mortality, high basic reproduction number, and lack of clinically approved drugs and vaccines. The genome of the virus responsible for COVID-19 has been sequenced. In addition, the three-dimensional structure of the main protease has been determined experimentally. OBJECTIVE: To identify potential drugs that can be repurposed for treatment of COVID-19 by using molecular docking based virtual screening of all approved drugs. METHODS: A list of drugs approved for clinical use was obtained from the SuperDRUG2 database. The structure of the target in the apo form, as well as structures of several target-ligand complexes, were obtained from RCSB PDB. The structure of SARS-CoV-2 Mpro determined from X-ray diffraction data was used as the target. Data regarding drugs in clinical trials for COVID-19 was obtained from clinicaltrials.org. Input for molecular docking based virtual screening was prepared by using Obabel and customized python, bash, and awk scripts. Molecular docking calculations were carried out with Vina and SMINA, and the docked conformations were analyzed and visualized with PLIP, Pymol, and Rasmol. RESULTS: Among the drugs that are being tested in clinical trials for COVID-19, Danoprevir and Darunavir were predicted to have the highest binding affinity for the Main protease (Mpro) target of SARS-CoV-2. Saquinavir and Beclabuvir were identified as the best novel candidates for COVID-19 therapy by using Virtual Screening of drugs approved for other clinical indications. CONCLUSION: Protease inhibitors approved for treatment of other viral diseases have the potential to be repurposed for treatment of COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Drug Evaluation, Preclinical , Molecular Docking Simulation , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Benzazepines/chemistry , Benzazepines/pharmacology , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Darunavir/chemistry , Darunavir/pharmacology , Drug Repositioning , High-Throughput Screening Assays , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles/chemistry , Isoindoles/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Saquinavir/chemistry , Saquinavir/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL